Artificial Neural Network ensemble modeling with conjunctive data clustering for water quality prediction in rivers
نویسندگان
چکیده
The Artificial Neural Network (ANN) is a powerful data-driven model that can capture and represent both linear and non-linear relationships between input and output data. Hence, ANNs have been widely used for the prediction and forecasting of water quality variables, to treat the uncertainty of contaminant source, and nonlinearity of water quality data. However, the initial weight parameter problem and imbalanced training data set make it difficult to assess the optimality of the results obtained, and impede the performance of ANN modeling. This study attempted to employ the ensemble modeling technique to estimate the performance of the ANN without the influence of initial weight parameters on the model results, and to apply several clustering methods, to alleviate the imbalance of the training data set. An ANN ensemble model was developed, and applied to forecast the water quality variables, pH, DO, turbidity (Turb), TN, and TP, at Sangdong station, on the Nakdong River. The optimal ANN models for each water quality variable could be selected from the ensemble modeling. The optimal ANN models for pH, DO, TN, and TP, of which the training target data set was distributed evenly, showed good results, with R squared higher than 0.90. But the ANN model for Turb, of which the training data set was imbalanced, showed large RMSE (11.8 NTU), and low R squared (0.58). The training data set of Turb was partitioned into several classes, by conjunctive clustering methods according to the patterns of data set for each number of clusters. The ANN ensemble models for Turb with the clustered training data set (clustered ANN models) were then developed. All clustered ANN models for Turb showed better results, than the model without clustering. In particular, the three-clustered ANN model showed an increase of R squared from 0.58 to 0.88, and a decrease of total RMSE from 11.8 NTU to 6.3 NTU. © 2015 International Association for Hydro-environment Engineering and Research, Asia Pacific Division. Published by Elsevier B.V. All rights
منابع مشابه
Artificial Neural Network Modeling for Predicting of some Ion Concentrations in the Karaj River
The water quality of the Karaj River was studied through collecting 2137 experimental data set gained by 20 sampling stations. The data included different parameters such as T (temperature), pH, NTU (turbidity), hardness, TDS (total dissolved solids), EC (electrical conductivity) and basic anion, cation concentrations. In this study a multi-layer perceptron artificial neural network model was d...
متن کاملPrediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh
Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...
متن کاملPrediction and modeling of fluoride concentrations in groundwater resources using an artificial neural network: a case study in Khaf
Background: One issue of concern in water supply is the quality of water. Measuring the qualitative parameters of water is time-consuming and costly. Predicting these parameters using various models leads to a reduction in related expenses and the presentation of overall and comprehensive statistics for water resource management. Methods: The present study used an artificial neural...
متن کاملApplication of artificial neural network (ANN) for the prediction of water treatment plant influent characteristics
Application of a reliable forecasting model for any water treatment plant (WTP) is essential in order to provide a tool for predicting influent water quality and to form a basis for controlling the operation of the process. This would minimize the operation and analysis costs, and assess the stability of WTP performances. This paper focuses on applying an artificial neural network (ANN) approac...
متن کاملDetermining water quality along the river with using evolutionary artificial neural networks (Case Study, Karoon River , Shahid Abbaspur-Arab Asad reach)
Rivers are important as the main source of supply for drinking, agriculture and industry.However, drinking water quality in terms of qualitative parameters, is the most important variable. Studias and predicting changes in quality parameters along a river, are one of the goals of water resources planners and managers. In this regard, many water quality models in order to maintain better water ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016